Using logic programming for modeling the one-carbon metabolism network to study the impact of folate deficiency on methylation processes.
نویسندگان
چکیده
Dynamical modeling is an accurate tool for describing the dynamic regulation of one-carbon metabolism (1CM) with emphasis on the alteration of DNA methylation and/or dUMP methylation into dTMP. Using logic programming we present a comprehensive and adaptative mathematical model to study the impact of folate deficiency, including folate transport and enzymes activities. 5-Methyltetrahydrofolate (5mTHF) uptake and DNA and dUMP methylation were studied by simulating nutritional 5mTHF deficiency and methylenetetrahydrofolate reductase (MTHFR) gene defects. Both conditions had distinct effects on 1CM metabolite synthesis. Simulating severe 5mTHF deficiency (25% of normal levels) modulated 11 metabolites. However, simulating a severe decrease in MTHFR activity (25% of normal activity) modulated another set of metabolites. Two oscillations of varying amplitude were observed at the steady state for DNA methylation with severe 5mTHF deficiency, and the dUMP/dTMP ratio reached a steady state after 2 h, compared to 2.5 h for 100% 5mTHF. MTHFR activity with 25% of V(max) resulted in an increased methylated DNA pool after half an hour. We observed a deviation earlier in the profile compared to 50% and 100% V(max). For dUMP methylation, the highest level was observed with 25%, suggesting a low rate of dUMP methylation into dTMP with 25% of MTHFR activity. In conclusion, using logic programming we were able to construct the 1CM for analyzing the dynamic system behavior. This model may be used to refine biological interpretations of data or as a tool that can provide new hypotheses for pathogenesis.
منابع مشابه
Mathematical Modeling of a Metabolic Network to Study the Impact of Food Contaminants on Genomic Methylation and DNA Instability
Environmental contamination of food is a worldwide public health problem. Folate mediated onecarbon metabolism plays an important role in epigenetic regulation of gene expression and mutagenesis. Many contaminants in food cause cancer through epigenetic mechanisms and/or DNA instability i.e. default methylation of uracil to thymine, subsequent to the decrease of 5-methyltetrahydrofolate (5 mTHF...
متن کاملA mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism.
Impaired folate-mediated 1-carbon metabolism has been linked to multiple disease outcomes. A better understanding of the nutritional and genetic influences on this complex biochemical pathway is needed to comprehend their impact on human health. To this end, we created a mathematical model of folate-mediated 1-carbon metabolism. The model uses published data on folate enzyme kinetics and regula...
متن کاملComprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling.
Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine plurip...
متن کاملMathematical modeling predicts the effect of folate deficiency and excess on cancer-related biomarkers.
BACKGROUND Folate is an essential B-vitamin that mediates one-carbon metabolism reactions, including nucleotide synthesis and others related to carcinogenesis. Both low- and high-folate status influences carcinogenesis. METHODS We used a mathematical model of folate-mediated one-carbon metabolism to predict the effect of a range of intracellular epithelial folate concentrations (0.25-15.0 μmo...
متن کاملGene-nutrient interactions and DNA methylation.
Many micronutrients and vitamins are critical for DNA synthesis/repair and maintenance of DNA methylation patterns. Folate has been most extensively investigated in this regard because of its unique function as methyl donor for nucleotide synthesis and biological methylation. Cell culture and animal and human studies showed that deficiency of folate induces disruption of DNA as well as alterati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular bioSystems
دوره 7 8 شماره
صفحات -
تاریخ انتشار 2011